Ozone and organic nitrates over the eastern United States: Sensitivity to isoprene chemistry
نویسندگان
چکیده
[1] We implement a new isoprene oxidation mechanism in a global 3-D chemical transport model (GEOS-Chem). Model results are evaluated with observations for ozone, isoprene oxidation products, and related species from the International Consortium for Atmospheric Research on Transport and Transformation aircraft campaign over the eastern United States in summer 2004. The model achieves an unbiased simulation of ozone in the boundary layer and the free troposphere, reflecting canceling effects from recent model updates for isoprene chemistry, bromine chemistry, and HO2 loss to aerosols. Simulation of the ozone-CO correlation is improved relative to previous versions of the model, and this is attributed to a lower and reversible yield of isoprene nitrates, increasing the ozone production efficiency per unit of nitrogen oxides (NOx≡NO+NO2). The model successfully reproduces the observed concentrations of organic nitrates (∑ANs) and their correlations with HCHO and ozone.∑ANs in the model is principally composed of secondary isoprene nitrates, including a major contribution from nighttime isoprene oxidation. The correlations of ∑ANs with HCHO and ozone then provide sensitive tests of isoprene chemistry and argue in particular against a fast isomerization channel for isoprene peroxy radicals. ∑ANs can provide an important reservoir for exporting NOx from the U.S. boundary layer. We find that the dependence of surface ozone on isoprene emission is positive throughout the U.S., even if NOx emissions are reduced by a factor of 4. Previous models showed negative dependences that we attribute to erroneous titration of OH by isoprene.
منابع مشابه
Observational constraints on the chemistry of isoprene nitrates over the eastern United States
[1] The formation of organic nitrates during the oxidation of the biogenic hydrocarbon isoprene can strongly affect boundary layer concentrations of ozone and nitrogen oxides (NOx = NO + NO2). We constrain uncertainties in the chemistry of these isoprene nitrates using chemical transport model simulations in conjunction with observations over the eastern United States from the International Con...
متن کاملEvaluating the contribution of changes in isoprene emissions to surface ozone trends over the eastern United States
[1] Reducing surface ozone (O3) to concentrations in compliance with the national air quality standard has proven to be challenging, despite tighter controls on O3 precursor emissions over the past few decades. New evidence indicates that isoprene emissions changed considerably from the mid-1980s to the mid-1990s owing to land-use changes in the eastern United States (Purves et al., 2004). Over...
متن کاملCAMx Ozone Source Attribution in the Eastern United States using Guidance from Observations during DISCOVER-AQ Maryland.
A Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10 simulation was assessed through comparison with data acquired during NASA's 2011 DISCOVER-AQ Maryland field campaign. Comparisons for the baseline simulation (CB05 chemistry, EPA 2011 National Emissions Inventory) show a model overestimate of NOy by +86.2% and an underestimate of HCHO by -28.3%. We present a new model framewo...
متن کاملEffects of additional nonmethane volatile organic compounds, organic nitrates, and direct emissions of oxygenated organic species on global tropospheric chemistry
[1] This work evaluates the sensitivity of tropospheric ozone and its precursors to the representation of nonmethane volatile organic compounds (NMVOCs) and organic nitrates. A global 3-D tropospheric chemistry/transport model (IMPACT) has been exercised initially using the GEOS-Chem chemical reaction mechanism. The model was then extended by adding emissions and photochemical reactions for aro...
متن کاملImportance of biogenic precursors to the budget of organic nitrates: observations of multifunctional organic nitrates by CIMS and TD-LIF during BEARPEX
Alkyl and multifunctional organic nitrates, molecules of the chemical form RONO2, are products of chain terminating reactions in the tropospheric HOx and NOx catalytic cycles and thereby impact ozone formation locally. Many of the molecules in the class have lifetimes that are long enough that they can be transported over large distances. If the RONO2 then decompose to deliver NOx to remote reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013